知识点备忘
2020-04-16
21 min read
比较琐碎的知识
- 联想小新是开机按F2进入bios
- windows上编辑的sh文件在linux上需要转换,转换软件为
doc2unix
,命令为doc2unix filename
- GPU机器之间拷贝文件直接scp加上机器的ip地址就可以,因为各个机器在同一局域网内
文本分类kaggle kernel
基于LSTM的多标签文本分类
kaggle kernel 链接: https://www.kaggle.com/rftexas/gru-lstm-rnn-101
主要亮点:
- 使用了tf.keras进行构建,很多代码可以复用为baseline
- 读取和加载Glove词向量
- AUC作为评价标准
- 数据集处理为tf_dataset输入keras模型
- 在训练集训练后,在验证集继续训练两个epochs(小技巧,可能很有用)
import gc
import pickle
import re
import string
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tensorflow as tf
from keras.preprocessing.sequence import pad_sequences
from keras.preprocessing.text import Tokenizer
from tensorflow.keras import backend as K
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras import initializers, regularizers, constraints
from tensorflow.keras.callbacks import ReduceLROnPlateau, LearningRateScheduler, EarlyStopping
from tensorflow.keras.layers import Layer, Dense, Input, Embedding, SpatialDropout1D, Bidirectional, LSTM, \
GlobalMaxPooling1D, GlobalAveragePooling1D
from tensorflow.keras.layers import concatenate
from tensorflow.keras.models import Model
from tqdm.notebook import tqdm
tqdm.pandas()
warnings.simplefilter('ignore')
# HYPERPARAMETERS
MAX_LEN = 220
MAX_FEATURES = 100000
EMBED_SIZE = 600
BATCH_SIZE = 128
N_EPOCHS = 5
LEARNING_RATE = 8e-4
# We will concatenate Crawl and GloVe embeddings
CRAWL_EMB_PATH = '../input/pickled-glove840b300d-for-10sec-loading/glove.840B.300d.pkl'
GLOVE_EMB_PATH = '../input/pickled-crawl300d2m-for-kernel-competitions/crawl-300d-2M.pkl'
def display_training_curves(training, validation, title, subplot):
"""
Quickly display training curves
"""
if subplot % 10 == 1:
plt.subplots(figsize=(10, 10), facecolor='#F0F0F0')
plt.tight_layout()
ax = plt.subplot(subplot)
ax.set_facecolor('#F8F8F8')
ax.plot(training)
ax.plot(validation)
ax.set_title('model' + title)
ax.set_ylabel(title)
ax.set_xlabel('epoch')
ax.legend(['train', 'valid'])
def get_coeffs(word, *arr):
return word, np.asarray(arr, dtype='float32')
def load_embeddings(embed_dir):
with open(embed_dir, 'rb') as infile:
embeddings = pickle.load(infile)
return embeddings
def build_embedding_matrix(word_index, embeddings_index, max_features, lower=True, verbose=True):
embedding_matrix = np.zeros((max_features, 300))
for word, i in tqdm(word_index.items(), len=(word_index.items())):
if lower:
word = word.lower()
if i >= max_features: continue
try:
embedding_vector = embeddings_index[word]
except:
embedding_vector = embeddings_index["unknown"]
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
embedding_matrix[i] = embedding_vector
return embedding_matrix
def build_matrix(word_index, embeddings_index):
embedding_matrix = np.zeros((len(word_index) + 1, 300))
for word, i in word_index.items():
try:
embedding_matrix[i] = embeddings_index[word]
except:
embedding_matrix[i] = embeddings_index["unknown"]
return embedding_matrix
class Attention(Layer):
"""
Custom Keras attention layer
Reference: https://www.kaggle.com/qqgeogor/keras-lstm-attention-glove840b-lb-0-043
"""
def __init__(self, step_dim, W_regularizer=None, b_regularizer=None,
W_constraint=None, b_constraint=None, bias=True, **kwargs):
self.supports_masking = True
self.bias = bias
self.step_dim = step_dim
self.features_dim = None
super(Attention, self).__init__(**kwargs)
self.param_W = {
'initializer': initializers.get('glorot_uniform'),
'name': '{}_W'.format(self.name),
'regularizer': regularizers.get(W_regularizer),
'constraint': constraints.get(W_constraint)
}
self.W = None
self.param_b = {
'initializer': 'zero',
'name': '{}_b'.format(self.name),
'regularizer': regularizers.get(b_regularizer),
'constraint': constraints.get(b_constraint)
}
self.b = None
def build(self, input_shape):
assert len(input_shape) == 3
self.features_dim = input_shape[-1]
self.W = self.add_weight(shape=(input_shape[-1],),
**self.param_W)
if self.bias:
self.b = self.add_weight(shape=(input_shape[1],),
**self.param_b)
self.built = True
def compute_mask(self, input, input_mask=None):
return None
def call(self, x, mask=None):
step_dim = self.step_dim
features_dim = self.features_dim
eij = K.reshape(
K.dot(K.reshape(x, (-1, features_dim)), K.reshape(self.W, (features_dim, 1))),
(-1, step_dim))
if self.bias:
eij += self.b
eij = K.tanh(eij)
a = K.exp(eij)
if mask is not None:
a *= K.cast(mask, K.floatx())
a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())
a = K.expand_dims(a)
weighted_input = x * a
return K.sum(weighted_input, axis=1)
def compute_output_shape(self, input_shape):
return input_shape[0], self.features_dim
# We create a balanced
print('Loading train sets...')
train1 = pd.read_csv("/kaggle/input/jigsaw-multilingual-toxic-comment-classification/jigsaw-toxic-comment-train.csv")
train2 = pd.read_csv("/kaggle/input/jigsaw-multilingual-toxic-comment-classification/jigsaw-unintended-bias-train.csv")
train = pd.concat([
train1[['comment_text', 'toxic']],
train2[['comment_text', 'toxic']].query('toxic==1'),
train2[['comment_text', 'toxic']].query('toxic==0').sample(n=100000, random_state=0)
])
del train1, train2
print('Loading validation sets...')
valid = pd.read_csv('/kaggle/input/val-en-df/validation_en.csv')
print('Loading test sets...')
test = pd.read_csv('/kaggle/input/test-en-df/test_en.csv')
sub = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/sample_submission.csv')
misspell_dict = {"aren't": "are not", "can't": "cannot", "couldn't": "could not",
"didn't": "did not", "doesn't": "does not", "don't": "do not",
"hadn't": "had not", "hasn't": "has not", "haven't": "have not",
"he'd": "he would", "he'll": "he will", "he's": "he is",
"i'd": "I had", "i'll": "I will", "i'm": "I am", "isn't": "is not",
"it's": "it is", "it'll": "it will", "i've": "I have", "let's": "let us",
"mightn't": "might not", "mustn't": "must not", "shan't": "shall not",
"she'd": "she would", "she'll": "she will", "she's": "she is",
"shouldn't": "should not", "that's": "that is", "there's": "there is",
"they'd": "they would", "they'll": "they will", "they're": "they are",
"they've": "they have", "we'd": "we would", "we're": "we are",
"weren't": "were not", "we've": "we have", "what'll": "what will",
"what're": "what are", "what's": "what is", "what've": "what have",
"where's": "where is", "who'd": "who would", "who'll": "who will",
"who're": "who are", "who's": "who is", "who've": "who have",
"won't": "will not", "wouldn't": "would not", "you'd": "you would",
"you'll": "you will", "you're": "you are", "you've": "you have",
"'re": " are", "wasn't": "was not", "we'll": " will", "tryin'": "trying"}
def _get_misspell(misspell_dict):
misspell_re = re.compile('(%s)' % '|'.join(misspell_dict.keys()))
return misspell_dict, misspell_re
def replace_typical_misspell(text):
misspellings, misspellings_re = _get_misspell(misspell_dict)
def replace(match):
return misspellings[match.group(0)]
return misspellings_re.sub(replace, text)
puncts = [',', '.', '"', ':', ')', '(', '-', '!', '?', '|', ';', "'", '$', '&', '/', '[', ']',
'>', '%', '=', '#', '*', '+', '\\', '•', '~', '@', '£', '·', '_', '{', '}', '©', '^',
'®', '`', '<', '→', '°', '€', '™', '›', '♥', '←', '×', '§', '″', '′', 'Â', '█',
'½', 'à', '…', '“', '★', '”', '–', '●', 'â', '►', '−', '¢', '²', '¬', '░', '¶',
'↑', '±', '¿', '▾', '═', '¦', '║', '―', '¥', '▓', '—', '‹', '─', '▒', ':', '¼',
'⊕', '▼', '▪', '†', '■', '’', '▀', '¨', '▄', '♫', '☆', 'é', '¯', '♦', '¤', '▲',
'è', '¸', '¾', 'Ã', '⋅', '‘', '∞', '∙', ')', '↓', '、', '│', '(', '»', ',', '♪',
'╩', '╚', '³', '・', '╦', '╣', '╔', '╗', '▬', '❤', 'ï', 'Ø', '¹', '≤', '‡', '√']
def clean_text(x):
x = str(x)
for punct in puncts + list(string.punctuation):
if punct in x:
x = x.replace(punct, f' {punct} ')
return x
def clean_numbers(x):
return re.sub(r'\d+', ' ', x)
def preprocess(train, valid, test, tfms):
for tfm in tfms:
print(tfm.__name__)
train['comment_text'] = train['comment_text'].progress_apply(tfm)
valid['comment_text_en'] = valid['comment_text_en'].progress_apply(tfm)
test['content'] = test['content'].progress_apply(tfm)
return train, valid, test
tfms = [replace_typical_misspell, clean_text, clean_numbers]
train, valid, test = preprocess(train, valid, test, tfms)
tokenizer = Tokenizer(num_words=MAX_FEATURES, filters='', lower=False)
print('Fitting tokenizer...')
tokenizer.fit_on_texts(list(train['comment_text']) + list(valid['comment_text_en']) + list(test['content_en']))
word_index = tokenizer.word_index
print('Building training set...')
X_train = tokenizer.texts_to_sequences(list(train['comment_text']))
y_train = train['toxic'].values
print('Building validation set...')
X_valid = tokenizer.texts_to_sequences(list(valid['comment_text_en']))
y_valid = valid['toxic'].values
print('Building test set ...')
X_test = tokenizer.texts_to_sequences(list(test['content_en']))
print('Padding sequences...')
X_train = pad_sequences(X_train, maxlen=MAX_LEN)
X_valid = pad_sequences(X_valid, maxlen=MAX_LEN)
X_test = pad_sequences(X_test, maxlen=MAX_LEN)
y_train = train.toxic.values
y_valid = valid.toxic.values
del tokenizer
print('Loading Crawl embeddings...')
crawl_embeddings = load_embeddings(CRAWL_EMB_PATH)
print('Loading GloVe embeddings...')
glove_embeddings = load_embeddings(GLOVE_EMB_PATH)
print('Building matrices...')
embedding_matrix_1 = build_matrix(word_index, crawl_embeddings)
embedding_matrix_2 = build_matrix(word_index, glove_embeddings)
print('Concatenating embedding matrices...')
embedding_matrix = np.concatenate([embedding_matrix_1, embedding_matrix_2], axis=1)
del embedding_matrix_1, embedding_matrix_2
del crawl_embeddings, glove_embeddings
gc.collect()
train_dataset = (
tf.data.Dataset
.from_tensor_slices((X_train, y_train))
.repeat()
.shuffle(2048)
.batch(BATCH_SIZE)
)
valid_dataset = (
tf.data.Dataset
.from_tensor_slices((X_valid, y_valid))
.batch(BATCH_SIZE)
.cache()
)
test_dataset = (
tf.data.Dataset
.from_tensor_slices(X_test)
.batch(BATCH_SIZE)
)
def build_model(word_index, embedding_matrix, verbose=True):
"""
credits go to: https://www.kaggle.com/thousandvoices/simple-lstm/
"""
sequence_input = Input(shape=(MAX_LEN,), dtype=tf.int32)
embedding_layer = Embedding(*embedding_matrix.shape,
weights=[embedding_matrix],
trainable=False)
x = embedding_layer(sequence_input)
x = SpatialDropout1D(0.3)(x)
x = Bidirectional(LSTM(256, return_sequences=True))(x)
x = Bidirectional(LSTM(128, return_sequences=True))(x)
att = Attention(MAX_LEN)(x)
avg_pool1 = GlobalAveragePooling1D()(x)
max_pool1 = GlobalMaxPooling1D()(x)
hidden = concatenate([att, avg_pool1, max_pool1])
hidden = Dense(512, activation='relu')(hidden)
hidden = Dense(128, activation='relu')(hidden)
out = Dense(1, activation='sigmoid')(hidden)
model = Model(sequence_input, out)
return model
model = build_model(word_index, embedding_matrix)
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[tf.keras.metrics.AUC()])
model.summary()
file_weights = 'best_model.h5'
# cb1 = ModelCheckpoint(file_weights, save_best_only=True)
cb2 = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=3)
cb3 = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, verbose=1, cooldown=0, min_lr=0.0001)
cb4 = LearningRateScheduler(lambda epoch: LEARNING_RATE * (0.6 ** epoch))
n_steps = X_train.shape[0] // BATCH_SIZE
train_history = model.fit(
train_dataset,
steps_per_epoch=n_steps,
validation_data=valid_dataset,
callbacks=[cb4],
epochs=N_EPOCHS
)
display_training_curves(
train_history.history['loss'],
train_history.history['val_loss'],
'loss',
211)
display_training_curves(
train_history.history['auc'],
train_history.history['val_auc'],
'AUC',
212)
n_steps = X_valid.shape[0] // BATCH_SIZE
train_history = model.fit(
valid_dataset.repeat(),
steps_per_epoch=n_steps,
callbacks=[cb4],
epochs=N_EPOCHS
)
preds = model.predict(test_dataset, verbose=1)
sub['toxic'] = preds
基于BERT的多标签文本分类(使用TPU)
kaggle kernel 链接: https://www.kaggle.com/sunyancn/jigsaw-tpu-bert-with-huggingface-and-keras
主要亮点:
- 使用了transformers的分词器进行快速分词
- 文本长度的可视化
- TF Hub BERT模型的加载
- TPU策略
# %% [markdown]
# ## About this notebook
#
# *[Jigsaw Multilingual Toxic Comment Classification](https://www.kaggle.com/c/jigsaw-multilingual-toxic-comment-classification)* is the 3rd annual competition organized by the Jigsaw team. It follows *[Toxic Comment Classification Challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge)*, the original 2018 competition, and *[Jigsaw Unintended Bias in Toxicity Classification](https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification)*, which required the competitors to consider biased ML predictions in their new models. This year, the goal is to use english only training data to run toxicity predictions on many different languages, which can be done using multilingual models, and speed up using TPUs.
#
# Many awesome notebooks has already been made so far. Many of them used really cool technologies like [Pytorch XLA](https://www.kaggle.com/theoviel/bert-pytorch-huggingface-starter). This notebook instead aims at constructing a **fast, concise, reusable, and beginner-friendly model scaffold**. It will focus on the following points:
# * **Using Tensorflow and Keras**: Tensorflow is a powerful framework, and Keras makes the training process extremely easy to understand. This is especially good for beginners to learn how to use TPUs, and for experts to focus on the modelling aspect.
# * **Using Huggingface's `transformers` library**: [This library](https://huggingface.co/transformers/) is extremely popular, so using this let you easily integrate the end result into your ML pipelines, and can be easily reused for your other projects.
# * **Native TPU usage**: The TPU usage is abstracted using the native `strategy` that was created using Tensorflow's `tf.distribute.experimental.TPUStrategy`. This avoids getting too much into the lower-level aspect of TPU management.
# * **Use a subset of the data**: Instead of using the entire dataset, we will only use the 2018 subset of the data available, which makes this much faster, all while achieving a respectable accuracy.
# %% [code]
import os
import warnings
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.layers import Dense, Input
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import ModelCheckpoint
from kaggle_datasets import KaggleDatasets
import transformers
import traitlets
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm.notebook import tqdm
from tokenizers import BertWordPieceTokenizer
from sklearn.metrics import roc_auc_score
warnings.simplefilter("ignore")
# %% [markdown]
# ## Helper Functions
# %% [code]
def fast_encode(texts, tokenizer, chunk_size=256, maxlen=512):
tokenizer.enable_truncation(max_length=maxlen)
tokenizer.enable_padding(max_length=maxlen)
all_ids = []
for i in tqdm(range(0, len(texts), chunk_size)):
text_chunk = texts[i:i+chunk_size].tolist()
encs = tokenizer.encode_batch(text_chunk)
all_ids.extend([enc.ids for enc in encs])
return np.array(all_ids)
# %% [code]
def build_model(transformer, loss='binary_crossentropy', max_len=512):
input_word_ids = Input(shape=(max_len,), dtype=tf.int32, name="input_word_ids")
sequence_output = transformer(input_word_ids)[0]
cls_token = sequence_output[:, 0, :]
x = tf.keras.layers.Dropout(0.35)(cls_token)
out = Dense(1, activation='sigmoid')(x)
model = Model(inputs=input_word_ids, outputs=out)
model.compile(Adam(lr=3e-5), loss=loss, metrics=[tf.keras.metrics.AUC()])
return model
# %% [markdown]
# Cosine similarity calculates similarity by measuring the cosine of angle between two vectors. This is calculated as:
# ![](https://miro.medium.com/max/426/1*hub04IikybZIBkSEcEOtGA.png)
#
# Cosine Similarity calculation for two vectors A and B [source]
# With cosine similarity, we need to convert sentences into vectors. One way to do that is to use bag of words with either TF (term frequency) or TF-IDF (term frequency- inverse document frequency). The choice of TF or TF-IDF depends on application and is immaterial to how cosine similarity is actually performed — which just needs vectors. TF is good for text similarity in general, but TF-IDF is good for search query relevance.
# %% [code]
# https://stackoverflow.com/questions/8897593/how-to-compute-the-similarity-between-two-text-documents
import nltk, string
from sklearn.feature_extraction.text import TfidfVectorizer
nltk.download('punkt') # if necessary...
stemmer = nltk.stem.porter.PorterStemmer()
remove_punctuation_map = dict((ord(char), None) for char in string.punctuation)
def stem_tokens(tokens):
return [stemmer.stem(item) for item in tokens]
'''remove punctuation, lowercase, stem'''
def normalize(text):
return stem_tokens(nltk.word_tokenize(text.lower().translate(remove_punctuation_map)))
vectorizer = TfidfVectorizer(tokenizer=normalize, stop_words='english')
def cosine_sim(text1, text2):
tfidf = vectorizer.fit_transform([text1, text2])
return ((tfidf * tfidf.T).A)[0,1]
# %% [markdown]
# ## TPU Configs
# %% [code]
AUTO = tf.data.experimental.AUTOTUNE
# Create strategy from tpu
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
# Data access
#GCS_DS_PATH = KaggleDatasets().get_gcs_path('kaggle/input/')
# %% [markdown]
# ## Create fast tokenizer
# %% [code]
# First load the real tokenizer
tokenizer = transformers.BertTokenizer.from_pretrained('bert-base-uncased')
# Save the loaded tokenizer locally
save_path = '/kaggle/working/distilbert_base_uncased/'
if not os.path.exists(save_path):
os.makedirs(save_path)
tokenizer.save_pretrained(save_path)
# Reload it with the huggingface tokenizers library
fast_tokenizer = BertWordPieceTokenizer('distilbert_base_uncased/vocab.txt', lowercase=True)
fast_tokenizer
# %% [markdown]
# ## Load text data into memory
# %% [code]
train1 = pd.read_csv("/kaggle/input/jigsaw-multilingual-toxic-comment-classification/jigsaw-toxic-comment-train.csv")
train2 = pd.read_csv("/kaggle/input/jigsaw-multilingual-toxic-comment-classification/jigsaw-unintended-bias-train.csv")
valid = pd.read_csv('/kaggle/input/val-en-df/validation_en.csv')
test1 = pd.read_csv('/kaggle/input/test-en-df/test_en.csv')
test2 = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-test-translated/jigsaw_miltilingual_test_translated.csv')
sub = pd.read_csv('/kaggle/input/jigsaw-multilingual-toxic-comment-classification/sample_submission.csv')
# %% [code]
test2.head()
# %% [markdown]
# ## Test dataset comparision
# %% [code]
plt.figure(figsize=(12, 8))
sns.distplot(train1.comment_text.str.len(), label='train')
sns.distplot(test1.content_en.str.len(), label='test1')
sns.distplot(test2.translated.str.len(), label='test2')
plt.legend();
# %% [code]
plt.figure(figsize=(12, 8))
sns.distplot(train1.comment_text.str.len(), label='train')
sns.distplot(test1.content_en.str.len(), label='test1')
sns.distplot(test2.translated.str.len(), label='test2')
plt.xlim([0, 512])
plt.legend();
# %% [markdown]
# Lets calculate cosine similarity two translated test datasets.
# %% [code]
test_set_similarity = [cosine_sim(t1, t2) for t1, t2 in tqdm(zip(test1.content_en, test2.translated))]
plt.figure(figsize=(12, 8))
sns.distplot(test_set_similarity);
# %% [markdown]
# ## Fast encode
# %% [code]
x_train = fast_encode(train1.comment_text.astype(str), fast_tokenizer, maxlen=512)
x_valid = fast_encode(valid.comment_text_en.astype(str), fast_tokenizer, maxlen=512)
x_test1 = fast_encode(test1.content_en.astype(str), fast_tokenizer, maxlen=512)
x_test2 = fast_encode(test2.translated.astype(str), fast_tokenizer, maxlen=512)
y_train = train1.toxic.values
y_valid = valid.toxic.values
# %% [markdown]
# ## Build datasets objects
# %% [code]
train_dataset = (
tf.data.Dataset
.from_tensor_slices((x_train, y_train))
.repeat()
.shuffle(2048)
.batch(64)
.prefetch(AUTO)
)
valid_dataset = (
tf.data.Dataset
.from_tensor_slices((x_valid, y_valid))
.batch(64)
.cache()
.prefetch(AUTO)
)
test_dataset = [(
tf.data.Dataset
.from_tensor_slices(x_test1)
.batch(64)
),
(
tf.data.Dataset
.from_tensor_slices(x_test2)
.batch(64)
)]
# %% [markdown]
# # Focal Loss
# %% [code]
from tensorflow.keras import backend as K
def focal_loss(gamma=2., alpha=.2):
def focal_loss_fixed(y_true, y_pred):
pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred))
pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred))
return -K.mean(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) - K.mean((1 - alpha) * K.pow(pt_0, gamma) * K.log(1. - pt_0))
return focal_loss_fixed
# %% [markdown]
# ## Load model into the TPU
# %% [code]
%%time
with strategy.scope():
transformer_layer = transformers.TFBertModel.from_pretrained('bert-base-uncased')
model = build_model(transformer_layer, loss=focal_loss(gamma=1.5), max_len=512)
model.summary()
# %% [markdown]
# ## RocAuc Callback
# %% [code]
from tensorflow.keras.callbacks import Callback
class RocAucCallback(Callback):
def __init__(self, test_data, score_thr):
self.test_data = test_data
self.score_thr = score_thr
self.test_pred = []
def on_epoch_end(self, epoch, logs=None):
if logs['val_auc'] > self.score_thr:
print('\nRun TTA...')
for td in self.test_data:
self.test_pred.append(self.model.predict(td))
# %% [markdown]
# # LrScheduler
# %% [code]
def build_lrfn(lr_start=0.000001, lr_max=0.000002,
lr_min=0.0000001, lr_rampup_epochs=7,
lr_sustain_epochs=0, lr_exp_decay=.87):
lr_max = lr_max * strategy.num_replicas_in_sync
def lrfn(epoch):
if epoch < lr_rampup_epochs:
lr = (lr_max - lr_start) / lr_rampup_epochs * epoch + lr_start
elif epoch < lr_rampup_epochs + lr_sustain_epochs:
lr = lr_max
else:
lr = (lr_max - lr_min) * lr_exp_decay**(epoch - lr_rampup_epochs - lr_sustain_epochs) + lr_min
return lr
return lrfn
# %% [code]
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 7))
_lrfn = build_lrfn()
plt.plot([i for i in range(35)], [_lrfn(i) for i in range(35)]);
# %% [markdown]
# ## Train Model
# %% [code]
roc_auc = RocAucCallback(test_dataset, 0.9195)
lrfn = build_lrfn()
lr_schedule = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=1)
train_history = model.fit(
train_dataset,
steps_per_epoch=150,
validation_data=valid_dataset,
callbacks=[lr_schedule, roc_auc],
epochs=35
)
# %% [markdown]
# ## Submission
# %% [code]
sub['toxic'] = np.mean(roc_auc.test_pred, axis=0)
sub.to_csv('submission.csv', index=False)
# %% [markdown]
# # Reference
# * [Jigsaw TPU: DistilBERT with Huggingface and Keras](https://www.kaggle.com/xhlulu/jigsaw-tpu-distilbert-with-huggingface-and-keras)
# * [inference of bert tpu model ml w/ validation](https://www.kaggle.com/abhishek/inference-of-bert-tpu-model-ml-w-validation)
# * [Overview of Text Similarity Metrics in Python](https://towardsdatascience.com/overview-of-text-similarity-metrics-3397c4601f50)
# * [test-en-df](https://www.kaggle.com/bamps53/test-en-df)
# * [val_en_df](https://www.kaggle.com/bamps53/val-en-df)
# * [Jigsaw multilingual toxic - test translated](https://www.kaggle.com/kashnitsky/jigsaw-multilingual-toxic-test-translated)